Logo 
Search:

C Programming Articles

Submit Article
Home » Articles » C Programming » Numerical MethodsRSS Feeds

PROGRAM FOR SUCESSIVE APPROXIMATION METHOD

Posted By: Lucas Bouchard     Category: C Programming     Views: 5082

WRITE A PROGRAM FOR SUCESSIVE APPROXIMATION METHOD.

Code for PROGRAM FOR SUCESSIVE APPROXIMATION METHOD in C Programming

#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int user_power,i=0,cnt=0,flag=0;
int coef[10]={0};
float x1=0,x2=0,t=0;
float fx1=0,fdx1=0;

void main()
{

    clrscr();

    printf("\n\n\t\t\t PROGRAM FOR SUCESSIVE APPROXIMATION");

    printf("\n\n\n\tENTER THE TOTAL NO. OF POWER:::: ");
    scanf("%d",&user_power);

    for(i=0;i<=user_power;i++)
    {
        printf("\n\t x^%d::",i);
        scanf("%d",&coef[i]);
    }

    printf("\n");

    printf("\n\t THE POLYNOMIAL IS ::: ");
    for(i=user_power;i>=0;i--)//printing coeff.
    {
        printf(" %dx^%d",coef[i],i);
    }

    printf("\n\tINTIAL X1---->");
    scanf("%f",&x1);

    printf("\n ******************************************************");
    printf("\n ITERATION    X1    FX1    F'X1  ");
    printf("\n **********************************************************");

    do
    {
            cnt++;
            fx1=fdx1=0;
            t=x1;
            for(i=user_power;i>=0;i--)
            {
                fdx1+=coef[i]* (i*pow(x1,(i-1)));
            }
            printf("\n %d         %.3f  %.3f  %.3f ",cnt,x1,fx1,fdx1);
            x1=fdx1;
    }while((fabs(t - x1))>=0.0001);
    printf("\n\t THE ROOT OF EQUATION IS %f",x2);
    getch();
}

/*******************************OUTPUT**********************************

PROGRAM FOR NEWTON RAPHSON GENERAL


ENTER THE TOTAL NO. OF POWER:::: 3

x^0::-3

x^1::-1

x^2::0

x^3::1


THE POLYNOMIAL IS ::: 1x^3 0x^2 -1x^1 -3x^0

INTIAL X1---->3

**************************************
ITERATION X1 FX1 F'X1
**************************************
1 2.192 21.000 26.000
2 1.794 5.344 13.419
3 1.681 0.980 8.656
4 1.672 0.068 7.475
5 1.672 0.000 7.384
**************************************

THE ROOT OF EQUATION IS 1.671700 **/
  
Share: 


Didn't find what you were looking for? Find more on PROGRAM FOR SUCESSIVE APPROXIMATION METHOD Or get search suggestion and latest updates.

Lucas Bouchard
Lucas Bouchard author of PROGRAM FOR SUCESSIVE APPROXIMATION METHOD is from Montreal, Canada.
 
View All Articles

 
Please enter your Comment

  • Comment should be atleast 30 Characters.
  • Please put code inside [Code] your code [/Code].

 
No Comment Found, Be the First to post comment!