Search:

Submit Article

# PROGRAM FOR SUCESSIVE APPROXIMATION METHOD

Posted By: Lucas Bouchard     Category: C Programming     Views: 3307

## Code for PROGRAM FOR SUCESSIVE APPROXIMATION METHOD in C Programming

```#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int user_power,i=0,cnt=0,flag=0;
int coef[10]={0};
float x1=0,x2=0,t=0;
float fx1=0,fdx1=0;

void main()
{

clrscr();

printf("\n\n\t\t\t PROGRAM FOR SUCESSIVE APPROXIMATION");

printf("\n\n\n\tENTER THE TOTAL NO. OF POWER:::: ");
scanf("%d",&user_power);

for(i=0;i<=user_power;i++)
{
printf("\n\t x^%d::",i);
scanf("%d",&coef[i]);
}

printf("\n");

printf("\n\t THE POLYNOMIAL IS ::: ");
for(i=user_power;i>=0;i--)//printing coeff.
{
printf(" %dx^%d",coef[i],i);
}

printf("\n\tINTIAL X1---->");
scanf("%f",&x1);

printf("\n ******************************************************");
printf("\n ITERATION    X1    FX1    F'X1  ");
printf("\n **********************************************************");

do
{
cnt++;
fx1=fdx1=0;
t=x1;
for(i=user_power;i>=0;i--)
{
fdx1+=coef[i]* (i*pow(x1,(i-1)));
}
printf("\n %d         %.3f  %.3f  %.3f ",cnt,x1,fx1,fdx1);
x1=fdx1;
}while((fabs(t - x1))>=0.0001);
printf("\n\t THE ROOT OF EQUATION IS %f",x2);
getch();
}

/*******************************OUTPUT**********************************            PROGRAM FOR NEWTON RAPHSON GENERAL    ENTER THE TOTAL NO. OF POWER:::: 3     x^0::-3     x^1::-1     x^2::0     x^3::1     THE POLYNOMIAL IS :::  1x^3 0x^2 -1x^1 -3x^0     INTIAL X1---->3 ************************************** ITERATION    X1    FX1    F'X1 ************************************** 1         2.192  21.000 26.000 2         1.794  5.344  13.419 3         1.681  0.980  8.656 4         1.672  0.068  7.475 5         1.672  0.000  7.384 **************************************     THE ROOT OF EQUATION IS 1.671700                               **/```
Share:

Didn't find what you were looking for? Find more on PROGRAM FOR SUCESSIVE APPROXIMATION METHOD Or get search suggestion and latest updates.

 Lucas Bouchard author of PROGRAM FOR SUCESSIVE APPROXIMATION METHOD is from Montreal, Canada. View All Articles

 Please enter your CommentComment should be atleast 30 Characters.Please put code inside [Code] your code [/Code]. No Comment Found, Be the First to post comment!