Logo 
Search:

C Programming Articles

Submit Article
Home » Articles » C Programming » Numerical MethodsRSS Feeds

NEWTON'S DIVIDED DIFFERENCE METHOD

Posted By: Matthew Evans     Category: C Programming     Views: 29345

Write a program of NEWTON'S DIVIDED DIFFERENCE METHOD.

Code for NEWTON'S DIVIDED DIFFERENCE METHOD in C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
  float x[10],y[10][10],sum,p,u,temp;
  int i,n,j,k=0,f,m;
  float fact(int);
  clrscr();
  printf("\nhow many record you will be enter: ");
  scanf("%d",&n);
  for(i=0; i<n; i++)
  {
   printf("\n\nenter the value of x%d: ",i);
   scanf("%f",&x[i]);
   printf("\n\nenter the value of f(x%d): ",i);
   scanf("%f",&y[k][i]);
  }
  printf("\n\nEnter X for finding f(x): ");
  scanf("%f",&p);

  for(i=1;i<n;i++)
  {
    k=i;
    for(j=0;j<n-i;j++)
    {
     y[i][j]=(y[i-1][j+1]-y[i-1][j])/(x[k]-x[j]);
     k++;
    }
  }
  printf("\n_____________________________________________________\n");
  printf("\n  x(i)\t   y(i)\t    y1(i)    y2(i)    y3(i)    y4(i)");
  printf("\n_____________________________________________________\n");
  for(i=0;i<n;i++)
  {
    printf("\n %.3f",x[i]);
    for(j=0;j<n-i;j++)
    {
     printf("   ");
     printf(" %.3f",y[j][i]);
    }
   printf("\n");
  }

  i=0;
  do
  {
   if(x[i]<p && p<x[i+1])
    k=1;
   else
    i++;
  }while(k != 1);
  f=i;

  sum=0;
  for(i=0;i<n-1;i++)
  {
   k=f;
   temp=1;
   for(j=0;j<i;j++)
   {
    temp = temp * (p - x[k]);
    k++;
   }
    sum = sum + temp*(y[i][f]);
  }
  printf("\n\n f(%.2f) = %f ",p,sum);
  getch();
}


/*
______________________________________

OUT PUT
______________________________________


how many record you will be enter: 5



enter the value of x0: 2.5


enter the value of f(x0): 8.85


enter the value of x1: 3


enter the value of f(x1): 11.45


enter the value of x2: 4.5


enter the value of f(x2): 20.66


enter the value of x3: 4.75


enter the value of f(x3): 22.85


enter the value of x4: 6


enter the value of f(x4): 38.60


Enter X for finding f(x): 3.5

_____________________________________________________

x(i) y(i) y1(i) y2(i) y3(i) y4(i)
_____________________________________________________

2.500 8.850 5.200 0.470 0.457 -0.029

3.000 11.450 6.140 1.497 0.354

4.500 20.660 8.760 2.560

4.750 22.850 12.600

6.000 38.600


f(3.50) = 13.992855

*/
  
Share: 


Didn't find what you were looking for? Find more on NEWTON'S DIVIDED DIFFERENCE METHOD Or get search suggestion and latest updates.

Matthew Evans
Matthew Evans author of NEWTON'S DIVIDED DIFFERENCE METHOD is from London, United Kingdom.
 
View All Articles

 
Please enter your Comment

  • Comment should be atleast 30 Characters.
  • Please put code inside [Code] your code [/Code].

 
No Comment Found, Be the First to post comment!