Search:

Submit Article

# BISECTION METHOD FOR PARTICULAR

Posted By: Adelbert Fischer     Category: C Programming     Views: 10595

## Code for BISECTION METHOD FOR PARTICULAR in C Programming

```#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int i=0,cnt=0,flag=0;
float x1,x2,x3=0;
float fx1=0,fx2=0,fx3=0,t=0;

float func(float f)
{
return(log10(f)-cos(f));
}

int check()
{
printf("\n\tINTIAL X1---->");
scanf("%f",&x1);

printf("\n\tINTIAL X2---->");
scanf("%f",&x2);

fx1=fx2=fx3=0.0;

if( (func(x1)*func(x2))>0)
{
printf("\n\t INTIAL VALUES ARE NOT PERFECT.");
return(1);
}
return(0);
}
void main()
{
clrscr();

printf("\n\n\t\t\t PROGRAM FOR PARICULAR BISECTION GENERAL");
printf("\n\n\t EQUATION ::::: LOG(X)-COS(X)");

while(1)
{
if(check()==0)
{
flag=1;
break;
}
check();
}
printf("\n ******************************************************");
printf("\n ITERATION    X1    FX1    X2    FX2     X3       FX3   ");
printf("\n **********************************************************");

if(flag==1)
{
while((fabs(x2 - x1))>=0.0001)
{
cnt++;
fx1=fx2=fx3=0;

fx1=func(x1);
fx2=func(x2);

x3=(x1+x2)/2;
fx3=func(x3);

printf("\n %d        %.3f  %.3f  %.3f  %.3f  %.3f  %.3f",cnt,x1,fx1,x2,fx2,x3,fx3);
t=fx1*fx3;
if(t>0)
{
x1=x3;
}
if(t<0)
{
x2=x3;
}
}
printf("\n\t ROOT OF EQUATION IS %f:::",x3);
}
getch();
}

/***********************************OUTPUT***********************************/

PROGRAM FOR PARICULAR BISECTION GENERAL

EQUATION ::::: LOG(X)-COS(X)

INTIAL X1---->1

INTIAL X2---->2

******************************************************
ITERATION    X1    FX1    X2    FX2     X3     FX3
******************************************************
1        1.000  -0.540  2.000  0.717  1.500   0.105
2        1.000  -0.540  1.500  0.105  1.250  -0.218
3        1.250  -0.218  1.500  0.105  1.375  -0.056
4        1.375  -0.056  1.500  0.105  1.438   0.025
5        1.375  -0.056  1.438  0.025  1.406  -0.016
6        1.406  -0.016  1.438  0.025  1.422   0.004
7        1.406  -0.016  1.422  0.004  1.414  -0.006
8        1.414  -0.006  1.422  0.004  1.418  -0.001
9        1.418  -0.001  1.422  0.004  1.420   0.002
10       1.418  -0.001  1.420  0.002  1.419   0.001
11       1.418  -0.001  1.419  0.001  1.418   0.000
12       1.418  -0.001  1.418  0.000  1.418  -0.000
13       1.418  -0.000  1.418  0.000  1.418  -0.000
14       1.418  -0.000  1.418  0.000  1.418  -0.000
*******************************************************

ROOT OF EQUATION IS :::::  1.41839
```
Share:

Didn't find what you were looking for? Find more on BISECTION METHOD FOR PARTICULAR Or get search suggestion and latest updates.

 Adelbert Fischer author of BISECTION METHOD FOR PARTICULAR is from Frankfurt, Germany. View All Articles

 Please enter your CommentComment should be atleast 30 Characters.Please put code inside [Code] your code [/Code]. No Comment Found, Be the First to post comment!